AI, from ‘Toy’ Problems to Practical Application
0:00 -:--
When you have “a really hot, frothy space” like AI, even the most basic questions — like what is it good for, how do you make sure your data is in shape, and so on — aren’t answered. This is just as true for the companies eager to adopt the technology and get into the space, as it is for those building companies around that space, observes Joe Spisak, Head of Partnerships at Amazon Web Services. “People treat it like magic,” adds a16z general partner Martin Casado. This magical realism is especially true of AI, because by definition — i.e., machines learning — there is a bit of a “black box” between what you put in and what you get out of it. Which may be fine… Except when you have to completely change the data being fed into that black box, or you’re shooting for a completely different target to come out of it. That’s why, observes Scott Clark, CEO and co-founder of SigOpt, “an untuned, sophisticated system will underperform a tuned simple system” almost every time. So what does this mean for organizations…